Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Limits Form 4: Exponential Limits Example 2

Practice Questions – Exponential Limits of the Form

[\dfrac{e^{ax} – e^{bx}}{x}]


Question 1. Evaluate: [\lim_{x→0} \dfrac{e^{3x} – e^{2x}}{x}]

Step-by-Step Solution:

As [x→0]:

[e^{3x} → 1]

[e^{2x} → 1]
Hence, numerator → [1 − 1 = 0] and denominator → [0].
So the limit is of the form [\dfrac{0}{0}].

Rewrite the numerator by adding and subtracting 1:
[\dfrac{(e^{3x}-1) – (e^{2x}-1)}{x}]

Split the fraction:
[\dfrac{e^{3x}-1}{x} – \dfrac{e^{2x}-1}{x}]

Use the standard result:

[\lim_{x→0} \dfrac{e^{3x}-1}{x} = 3]

[\lim_{x→0} \dfrac{e^{2x}-1}{x} = 2]

Subtract the results:
[3 − 2 = 1]

Final Answer:
[1]

Question 2. Evaluate: [\lim_{x→0} \dfrac{e^{5x} – e^{x}}{x}]

Step-by-Step Solution:

As [x→0], both [e^{5x}] and [e^{x}] approach [1].
Hence, the form is [\dfrac{0}{0}].

Rewrite the numerator:
[\dfrac{(e^{5x}-1) – (e^{x}-1)}{x}]

Separate the terms:
[\dfrac{e^{5x}-1}{x} – \dfrac{e^{x}-1}{x}]

Apply the standard limit:

[\dfrac{e^{5x}-1}{x} → 5]

[\dfrac{e^{x}-1}{x} → 1]

Subtract:
[5 − 1 = 4]

Final Answer:
[4]

Question 3. Evaluate: [\lim_{x→0} \dfrac{e^{4x} – e^{2x}}{x}]

Step-by-Step Solution:

As [x→0]:

[e^{4x} → 1]

[e^{2x} → 1]
So the limit is of the form [\dfrac{0}{0}].

Rewrite the expression:
[\dfrac{(e^{4x}-1) – (e^{2x}-1)}{x}]

Split the fraction:
[\dfrac{e^{4x}-1}{x} – \dfrac{e^{2x}-1}{x}]

Apply the standard result separately:

[\lim_{x→0} \dfrac{e^{4x}-1}{x} = 4]

[\lim_{x→0} \dfrac{e^{2x}-1}{x} = 2]

Subtract:
[4 − 2 = 2]

Final Answer:
[2]

Question 4. Evaluate: [\lim_{x→0} \dfrac{e^{7x} – e^{3x}}{x}]

Step-by-Step Solution:

As [x→0], the expression becomes [\dfrac{0}{0}].

Rewrite:
[\dfrac{(e^{7x}-1) – (e^{3x}-1)}{x}]

Split:
[\dfrac{e^{7x}-1}{x} – \dfrac{e^{3x}-1}{x}]

Apply standard limits:

[7]

[3]

Subtract:
[7 − 3 = 4]

Final Answer:
[4]

Question 5. Evaluate: [\lim_{x→0} \dfrac{e^{2x} – e^{-x}}{x}]

Step-by-Step Solution:

As [x→0]:

[e^{2x} → 1]

[e^{-x} → 1]
So the form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{(e^{2x}-1) – (e^{-x}-1)}{x}]

Split:
[\dfrac{e^{2x}-1}{x} – \dfrac{e^{-x}-1}{x}]

Apply limits:

[\lim_{x→0} \dfrac{e^{2x}-1}{x} = 2]

[\lim_{x→0} \dfrac{e^{-x}-1}{x} = -1]

Subtract:
[2 − (−1) = 3]

Final Answer:
[3]

Question 6. Evaluate: [\lim_{x→0} \dfrac{e^{x} – e^{-2x}}{x}]

Step-by-Step Solution:

Form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{(e^{x}-1) – (e^{-2x}-1)}{x}]

Split:
[\dfrac{e^{x}-1}{x} – \dfrac{e^{-2x}-1}{x}]

Apply limits:

[1]

[-2]

Subtract:
[1 − (−2) = 3]

Final Answer:
[3]

Question 7. Evaluate: [\lim_{x→0} \dfrac{e^{6x} – e^{4x}}{x}]

Step-by-Step Solution:

Form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{(e^{6x}-1) – (e^{4x}-1)}{x}]

Split:
[\dfrac{e^{6x}-1}{x} – \dfrac{e^{4x}-1}{x}]

Apply limits:

[6]

[4]

Subtract:
[2]

Final Answer:
[2]

Question 8. Evaluate: [\lim_{x→0} \dfrac{e^{9x} – e^{5x}}{x}]

Step-by-Step Solution:

Form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{(e^{9x}-1) – (e^{5x}-1)}{x}]

Split:
[\dfrac{e^{9x}-1}{x} – \dfrac{e^{5x}-1}{x}]

Apply limits:

[9]

[5]

Subtract:
[4]

Final Answer:
[4]

Question 9. Evaluate: [\lim_{x→0} \dfrac{e^{-x} – e^{-3x}}{x}]

Step-by-Step Solution:

Form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{(e^{-x}-1) – (e^{-3x}-1)}{x}]

Split:
[\dfrac{e^{-x}-1}{x} – \dfrac{e^{-3x}-1}{x}]

Apply limits:

[-1]

[-3]

Subtract:
[-1 − (−3) = 2]

Final Answer:
[2]

Question 10. Evaluate: [\lim_{x→0} \dfrac{e^{8x} – e^{2x}}{x}]

Step-by-Step Solution:

Form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{(e^{8x}-1) – (e^{2x}-1)}{x}]

Split:
[\dfrac{e^{8x}-1}{x} – \dfrac{e^{2x}-1}{x}]

Apply limits:

[8]

[2]

Subtract:
[6]

Final Answer:
[6]


Key Takeaway for Students

For limits of the form
[\lim_{x→0} \dfrac{e^{ax}-e^{bx}}{x}]

Direct Result:
[\boxed{a – b}]

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share