Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Exponential Limits Result 2: Example 1

Standard Results Used (Repeated Every Time)

  1.  [\lim_{x→0} \dfrac{a^{x} – 1}{x} = \log_{e} a]
  1.  [\lim_{x→0} \dfrac{\sin x}{x} = 1]

Practice Questions – Mixed Exponential Forms

Question 1. Evaluate: [\lim_{x→0} \dfrac{2^{\sin x} – 1}{x}]

Step-by-Step Solution:

As [x→0]:

[\sin x → 0]

Hence [2^{\sin x} → 2^{0} = 1]
So the given limit is of the form [\dfrac{0}{0}].

Multiply and divide by [\sin x]:
[\dfrac{2^{\sin x} – 1}{x} ][= \dfrac{2^{\sin x} – 1}{\sin x} \cdot \dfrac{\sin x}{x}]

Apply standard limits:

[\lim_{\sin x→0} \dfrac{2^{\sin x} – 1}{\sin x} ][= \log_{e} 2]

[\lim_{x→0} \dfrac{\sin x}{x} = 1]

Multiply the results:
[\log_{e} 2 \cdot 1 = \log_{e} 2]

Final Answer:
[\log_{e} 2]

Question 2. Evaluate: [\lim_{x→0} \dfrac{5^{\sin x} – 1}{x}]

Step-by-Step Solution:

As [x→0], [\sin x→0], so the form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{5^{\sin x} – 1}{\sin x} \cdot \dfrac{\sin x}{x}]

Apply standard limits:

[\dfrac{5^{\sin x} – 1}{\sin x} → \log_{e} 5]

[\dfrac{\sin x}{x} → 1]

Multiply:
[\log_{e} 5]

Final Answer:
[\log_{e} 5]

Question 3. Evaluate: [\lim_{x→0} \dfrac{3^{2\sin x} – 1}{x}]

Step-by-Step Solution:

As [x→0], [\sin x→0], hence [2\sin x→0].
The form is [\dfrac{0}{0}].

Rewrite:
[\dfrac{3^{2\sin x} – 1}{2\sin x} \cdot \dfrac{2\sin x}{x}]

Evaluate each part:

[\dfrac{3^{2\sin x} – 1}{2\sin x} → \log_{e} 3]

[\dfrac{2\sin x}{x} → 2]

Multiply:
[2 \log_{e} 3]

Final Answer:
[2 \log_{e} 3]

Question 4. Evaluate: [\lim_{x→0} \dfrac{7^{\sin x} – 1}{2x}]

Step-by-Step Solution:

Rewrite:
[\dfrac{1}{2} \cdot \dfrac{7^{\sin x} – 1}{x}]

Further rewrite:
[\dfrac{1}{2} \cdot \dfrac{7^{\sin x} – 1}{\sin x} \cdot \dfrac{\sin x}{x}]

Apply limits:

[\dfrac{7^{\sin x} – 1}{\sin x} → \log_{e} 7]

[\dfrac{\sin x}{x} → 1]

Multiply:
[\dfrac{1}{2} \log_{e} 7]

Final Answer:
[\dfrac{1}{2} \log_{e} 7]

Question 5. Evaluate: [\lim_{x→0} \dfrac{10^{\sin x} – 1}{x}]

Step-by-Step Solution:

The form is [\dfrac{0}{0}].

Rewrite using multiplication:
[\dfrac{10^{\sin x} – 1}{\sin x} \cdot \dfrac{\sin x}{x}]

Apply standard results.

Final Answer:
[\log_{e} 10]

Question 6. Evaluate: [\lim_{x→0} \dfrac{4^{3\sin x} – 1}{x}]

Step-by-Step Solution:

As [x→0], [3\sin x→0].

Rewrite:
[\dfrac{4^{3\sin x} – 1}{3\sin x} \cdot \dfrac{3\sin x}{x}]

Apply limits:

[\dfrac{4^{3\sin x} – 1}{3\sin x} → \log_{e} 4]

[\dfrac{3\sin x}{x} → 3]

Multiply:
[3 \log_{e} 4]

Final Answer:
[3 \log_{e} 4]

Question 7. Evaluate: [\lim_{x→0} \dfrac{a^{\sin x} – 1}{x}], where [a > 0]

Step-by-Step Solution:

This is the general mixed form.

Rewrite:
[\dfrac{a^{\sin x} – 1}{\sin x} \cdot \dfrac{\sin x}{x}]

Apply standard limits.

Final Answer:
[\log_{e} a]

Question 8. Evaluate: [\lim_{x→0} \dfrac{9^{\sin x} – 1}{5x}]

Step-by-Step Solution:

Rewrite:
[\dfrac{1}{5} \cdot \dfrac{9^{\sin x} – 1}{\sin x} \cdot \dfrac{\sin x}{x}]

Apply limits.

Final Answer:
[\dfrac{1}{5} \log_{e} 9]

Question 9. Evaluate: [\lim_{x→0} \dfrac{e^{\sin x} – 1}{x}]

Step-by-Step Solution:

Rewrite:
[\dfrac{e^{\sin x} – 1}{\sin x} \cdot \dfrac{\sin x}{x}]

Apply standard limits:

[\dfrac{e^{y} – 1}{y} → 1]

[\dfrac{\sin x}{x} → 1]

Final Answer:
[1]

Question 10. Evaluate: [\lim_{x→0} \dfrac{2^{\tan x} – 1}{x}]

Step-by-Step Solution:

As [x→0], [\tan x→0].

Rewrite:
[\dfrac{2^{\tan x} – 1}{\tan x} \cdot \dfrac{\tan x}{x}]

Apply limits:

[\dfrac{2^{\tan x} – 1}{\tan x} → \log_{e} 2]

[\dfrac{\tan x}{x} → 1]

Final Answer:
[\log_{e} 2]


Final Student Takeaway

Whenever you see
[\dfrac{a^{\sin x} – 1}{x}]

  1. Immediately split it into two standard limits
  2. Convert it into logarithmic × trigonometric form
  3. Apply known results step by step

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share