Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Limits of the form 1^ infinity: Example 3

Practice Questions with Step-by-Step Solutions

Exponential Limits of the Form

[\lim_{x \to 0} \left(\dfrac{1 + ax^2}{1 + bx^2}\right)^{\dfrac{1}{x^2}}]

Standard Result Used (Very Important)

If
[\lim_{x \to 0} \left(\dfrac{1 + ax^2}{1 + bx^2}\right)^{\dfrac{1}{x^2}}]

Then the limit equals:

[\boxed{e^{a-b}}]

This result will be derived step-by-step in every solution below.

Question 1. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 5x^2}{1 + 3x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Identify the form
As [x → 0],

[1 + 5x^2 → 1]

[1 + 3x^2 → 1]

So base → 1 and exponent → ∞
Form = [1^{\infty}] (indeterminate)

Step 2: Split the fraction

[\left(\dfrac{1 + 5x^2}{1 + 3x^2}\right)^{\dfrac{1}{x^2}} ][= \dfrac{(1 + 5x^2)^{\dfrac{1}{x^2}}}{(1 + 3x^2)^{\dfrac{1}{x^2}}}]

Step 3: Rewrite each term

[(1 + 5x^2)^{\dfrac{1}{x^2}} ][= \left((1 + 5x^2)^{\dfrac{1}{5x^2}}\right)^5 → e^5]

[(1 + 3x^2)^{\dfrac{1}{x^2}} ][= \left((1 + 3x^2)^{\dfrac{1}{3x^2}}\right)^3 → e^3]

Step 4: Take ratio

[\dfrac{e^5}{e^3} = e^{5-3}]

Final Answer:

[e^2]

Question 2. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 7x^2}{1 + 2x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Form = [1^{\infty}]

Step 2: Split expression

[\dfrac{(1 + 7x^2)^{\dfrac{1}{x^2}}}{(1 + 2x^2)^{\dfrac{1}{x^2}}}]

Step 3: Apply standard limit

[(1 + 7x^2)^{\dfrac{1}{x^2}} → e^7]
[(1 + 2x^2)^{\dfrac{1}{x^2}} → e^2]

Step 4: Combine

[e^{7-2}]

Final Answer:

[e^5]

Question 3. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 4x^2}{1 + x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Identify [a = 4], [b = 1]

Step 2: Use standard result

[e^{a-b} = e^{4-1}]

Final Answer:

[e^3]

Question 4. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 9x^2}{1 + 5x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Examine the form

As [x → 0]:

[1 + 9x^2 → 1]

[1 + 5x^2 → 1]

[\dfrac{1}{x^2} → \infty]

So the limit is of the indeterminate form:

[\boxed{1^{\infty}}]

Step 2: Rewrite the expression by separating numerator and denominator

[\left(\dfrac{1 + 9x^2}{1 + 5x^2}\right)^{\dfrac{1}{x^2}}
= \dfrac{(1 + 9x^2)^{\dfrac{1}{x^2}}}{(1 + 5x^2)^{\dfrac{1}{x^2}}}]

Step 3: Handle the numerator

Rewrite the exponent:

[(1 + 9x^2)^{\dfrac{1}{x^2}}
= \left((1 + 9x^2)^{\dfrac{1}{9x^2}}\right)^9]

Using the standard limit:
[\lim_{u \to 0} (1 + u)^{\dfrac{1}{u}} = e]

So,

[(1 + 9x^2)^{\dfrac{1}{9x^2}} → e]

Hence,

[(1 + 9x^2)^{\dfrac{1}{x^2}} → e^9]

Step 4: Handle the denominator

Similarly,

[(1 + 5x^2)^{\dfrac{1}{x^2}}
= \left((1 + 5x^2)^{\dfrac{1}{5x^2}}\right)^5]

So,

[(1 + 5x^2)^{\dfrac{1}{5x^2}} → e]

Therefore,

[(1 + 5x^2)^{\dfrac{1}{x^2}} → e^5]

Step 5: Take the ratio

[\dfrac{e^9}{e^5} = e^{9-5}]

Final Answer:

[e^4]

Question 5. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 3x^2}{1 + 8x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Form = [1^{\infty}]

Step 2: Separate numerator and denominator

[\dfrac{(1 + 3x^2)^{\dfrac{1}{x^2}}}{(1 + 8x^2)^{\dfrac{1}{x^2}}}]

Step 3: Rewrite numerator

[(1 + 3x^2)^{\dfrac{1}{x^2}}
= \left((1 + 3x^2)^{\dfrac{1}{3x^2}}\right)^3 → e^3]

Step 4: Rewrite denominator

[(1 + 8x^2)^{\dfrac{1}{x^2}}
= \left((1 + 8x^2)^{\dfrac{1}{8x^2}}\right)^8 → e^8]

Step 5: Take ratio

[\dfrac{e^3}{e^8} = e^{3-8}]

Final Answer:

[\dfrac{1}{e^5}]

Question 6. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 6x^2}{1 + 6x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Both numerator and denominator are identical.

Step 2: Rewrite

[\left(\dfrac{1 + 6x^2}{1 + 6x^2}\right)^{\dfrac{1}{x^2}}
= (1)^{\dfrac{1}{x^2}}]

Step 3: Any power of 1 is 1

Final Answer:

[1]

Question 7. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 2x^2}{1 + 5x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Form = [1^{\infty}]

Step 2: Separate terms

[\dfrac{(1 + 2x^2)^{\dfrac{1}{x^2}}}{(1 + 5x^2)^{\dfrac{1}{x^2}}}]

Step 3: Rewrite numerator

[(1 + 2x^2)^{\dfrac{1}{x^2}}
= \left((1 + 2x^2)^{\dfrac{1}{2x^2}}\right)^2 → e^2]

Step 4: Rewrite denominator

[(1 + 5x^2)^{\dfrac{1}{x^2}}
= \left((1 + 5x^2)^{\dfrac{1}{5x^2}}\right)^5 → e^5]

Step 5: Take ratio

[\dfrac{e^2}{e^5} = e^{-3}]

Final Answer:

[\dfrac{1}{e^3}]

Question 8. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + 10x^2}{1 + 4x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Form = [1^{\infty}]

Step 2: Separate expression

[\dfrac{(1 + 10x^2)^{\dfrac{1}{x^2}}}{(1 + 4x^2)^{\dfrac{1}{x^2}}}]

Step 3: Numerator

[(1 + 10x^2)^{\dfrac{1}{x^2}}
= \left((1 + 10x^2)^{\dfrac{1}{10x^2}}\right)^{10} → e^{10}]

Step 4: Denominator

[(1 + 4x^2)^{\dfrac{1}{x^2}}
= \left((1 + 4x^2)^{\dfrac{1}{4x^2}}\right)^4 → e^4]

Step 5: Take ratio

[e^{10-4}]

Final Answer:

[e^6]

Question 9. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + \pi x^2}{1 + x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: Treat [\pi] as a constant

Step 2: Separate expression

[\dfrac{(1 + \pi x^2)^{\dfrac{1}{x^2}}}{(1 + x^2)^{\dfrac{1}{x^2}}}]

Step 3: Numerator

[(1 + \pi x^2)^{\dfrac{1}{x^2}}
= \left((1 + \pi x^2)^{\dfrac{1}{\pi x^2}}\right)^{\pi} → e^{\pi}]

Step 4: Denominator

[(1 + x^2)^{\dfrac{1}{x^2}} → e]

Step 5: Take ratio

[e^{\pi – 1}]

Final Answer:

[e^{\pi – 1}]

Question 10. Evaluate [\lim_{x \to 0} \left(\dfrac{1 + (\sin 1)x^2}{1 + 2x^2}\right)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: [\sin 1] is a constant

Step 2: Separate expression

[\dfrac{(1 + (\sin 1)x^2)^{\dfrac{1}{x^2}}}{(1 + 2x^2)^{\dfrac{1}{x^2}}}]

Step 3: Numerator

[(1 + (\sin 1)x^2)^{\dfrac{1}{x^2}}
= \left((1 + (\sin 1)x^2)^{\dfrac{1}{(\sin 1)x^2}}\right)^{\sin 1} → e^{\sin 1}]

Step 4: Denominator

[(1 + 2x^2)^{\dfrac{1}{x^2}} → e^2]

Step 5: Take ratio

[e^{\sin 1 – 2}]

Final Answer:

[e^{\sin 1 – 2}]

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share