1. Concept Overview: What Are Logarithmic Limits?
A logarithmic limit is a limit in which the given expression involves a logarithmic function, usually of the form:
- [\log(1 + x)]
- [\ln(1 + x)]
- [\log(1 + ax)]
These limits are generally evaluated when the argument of the logarithm approaches 1, because:
Logarithmic functions behave very simply near 1
Why “1” Is Important in Logarithmic Limits?
Recall:
- [\ln 1 = 0]
- [\log 1 = 0]
So, whenever the expression inside the logarithm approaches 1, the numerator approaches 0, and the limit often becomes an indeterminate form [\dfrac{0}{0}].
That is exactly where limits are required.
2. Base of Logarithm – A Crucial Clarification
In calculus and limits:
- Natural logarithm [\ln] (base e) is preferred
- Other logarithms are converted using:
[\log a = \dfrac{\ln a}{\ln 10}]
So first, we derive standard results using [\ln], and then extend them to other bases.
3. First Standard Logarithmic Limit
Standard Result 1
[\lim_{x \to 0} \dfrac{\ln(1+x)}{x} = 1]
Step-by-Step Derivation
Step 1: Observe the form
As [x → 0]:
- [\ln(1+x) → \ln 1 = 0]
- [x → 0]
So the limit is of the form:
[\dfrac{0}{0}] → Indeterminate
Step 2: Use a known exponential limit
We already know the standard exponential limit:
[\lim_{x \to 0} (1 + x)^{\dfrac{1}{x}} = e]
Step 3: Take natural logarithm on both sides
[\ln \left( (1 + x)^{\dfrac{1}{x}} \right) = \ln e]
Step 4: Use logarithmic laws
Using [\ln a^b = b \ln a]:
[\dfrac{1}{x} \ln(1 + x) = 1]
Step 5: Rearranging
[\dfrac{\ln(1+x)}{x} = 1]
Step 6: Take limit
[\lim_{x \to 0} \dfrac{\ln(1+x)}{x} = 1]
✔ Derived, not memorized
4. Second Standard Logarithmic Limit (With Coefficient)
Standard Result 2
[\lim_{x \to 0} \dfrac{\ln(1+ax)}{x} = a]
Step-by-Step Derivation
Step 1: Rewrite the expression
[\dfrac{\ln(1+ax)}{x} = a \cdot \dfrac{\ln(1+ax)}{ax}]
Step 2: Take limit
[\lim_{x \to 0} a \cdot \dfrac{\ln(1+ax)}{ax}]
Step 3: Apply Standard Result 1
Since [ax → 0] as [x → 0]:
[\lim_{ax \to 0} \dfrac{\ln(1+ax)}{ax} = 1]
Step 4: Final Answer
[\lim_{x \to 0} \dfrac{\ln(1+ax)}{x} = a]
5. Logarithmic Limit with a Constant in Denominator
Standard Result 3
[\lim_{x \to 0} \dfrac{\ln(1+ax)}{bx} = \dfrac{a}{b}]
Step-by-Step Explanation
Step 1: Separate constants
[\dfrac{\ln(1+ax)}{bx} = \dfrac{1}{b} \cdot \dfrac{\ln(1+ax)}{x}]
Step 2: Use Standard Result 2
[\lim_{x \to 0} \dfrac{\ln(1+ax)}{x} = a]
Step 3: Final Answer
[\lim_{x \to 0} \dfrac{\ln(1+ax)}{bx} = \dfrac{a}{b}]
6. Logarithmic Limit with Trigonometric Function
Standard Result 4
[\lim_{x \to 0} \dfrac{\ln(1+\sin x)}{x} = 1]
Step-by-Step Derivation
Step 1: Multiply and divide by [\sin x]
[\dfrac{\ln(1+\sin x)}{x}
= \dfrac{\ln(1+\sin x)}{\sin x} \cdot \dfrac{\sin x}{x}]
Step 2: Evaluate each limit separately
- [\lim_{x \to 0} \dfrac{\ln(1+\sin x)}{\sin x} = 1]
(using Standard Result 1) - [\lim_{x \to 0} \dfrac{\sin x}{x} = 1]
Step 3: Multiply the results
[\lim_{x \to 0} \dfrac{\ln(1+\sin x)}{x} = 1 \cdot 1 = 1]
7. Important Observations
- Always look for [\ln(1+\text{something})][ → 0]
- Convert everything to standard forms
- Use known trigonometric limits when needed
- Never substitute directly when form is [\dfrac{0}{0}]
- Write the standard result before using it
8. Key Standard Results (To Remember)
| Limit | Result |
|---|---|
| [\lim_{x \to 0} \dfrac{\ln(1+x)}{x}] | [1] |
| [\lim_{x \to 0} \dfrac{\ln(1+ax)}{x}] | [a] |
| [\lim_{x \to 0} \dfrac{\ln(1+ax)}{bx}] | [\dfrac{a}{b}] |
| [\lim_{x \to 0} \dfrac{\ln(1+\sin x)}{x}] | [1] |
Practice Questions with Step-by-Step Solutions
Question 1. Evaluate [\lim_{x \to 0} \dfrac{\ln(1+4x)}{x}]
Step-by-Step Solution:
Step 1: Check the form
As [x → 0],
Numerator → [\ln(1) = 0]
Denominator → [0]
So the form is [\dfrac{0}{0}] (indeterminate)
Step 2: Recall the standard result
[\lim_{x \to 0} \dfrac{\ln(1+ax)}{x} = a]
Step 3: Compare with the given expression
Here, [a = 4]
Final Answer:
[\boxed{4}]
Question 2. Find [\lim_{x \to 0} \dfrac{\ln(1+7x)}{2x}]
Step-by-Step Solution:
Step 1: Identify the indeterminate form
As [x → 0], the form is [\dfrac{0}{0}]
Step 2: Separate the constant in denominator
[\dfrac{\ln(1+7x)}{2x} = \dfrac{1}{2} \cdot \dfrac{\ln(1+7x)}{x}]
Step 3: Apply the standard result
[\lim_{x \to 0} \dfrac{\ln(1+7x)}{x} = 7]
Step 4: Multiply constants
[\dfrac{1}{2} \times 7 = \dfrac{7}{2}]
Final Answer:
[\boxed{\dfrac{7}{2}}]
Question 3. Evaluate [\lim_{x \to 0} \dfrac{\ln(1+\sin x)}{x}]
Step-by-Step Solution:
Step 1: Observe the form
As [x → 0],
[\sin x → 0]
So numerator → [\ln(1) = 0]
Form = [\dfrac{0}{0}]
Step 2: Multiply and divide by [\sin x]
[\dfrac{\ln(1+\sin x)}{x}
= \dfrac{\ln(1+\sin x)}{\sin x} \cdot \dfrac{\sin x}{x}]
Step 3: Evaluate each limit separately
[\lim_{x \to 0} \dfrac{\ln(1+\sin x)}{\sin x} = 1]
(using [\lim_{t \to 0} \dfrac{\ln(1+t)}{t} = 1])
[\lim_{x \to 0} \dfrac{\sin x}{x} = 1]
Step 4: Multiply results
[1 × 1 = 1]
Final Answer:
[\boxed{1}]
Question 4. Find [\lim_{x \to 0} \dfrac{\ln(1+3x)}{\tan x}]
Step-by-Step Solution:
Step 1: Identify the indeterminate form
As [x → 0], form is [\dfrac{0}{0}]
Step 2: Rewrite the expression
[\dfrac{\ln(1+3x)}{\tan x}
= \dfrac{\ln(1+3x)}{x} \cdot \dfrac{x}{\tan x}]
Step 3: Evaluate each limit
[\lim_{x \to 0} \dfrac{\ln(1+3x)}{x} = 3]
[\lim_{x \to 0} \dfrac{x}{\tan x} = 1]
Step 4: Multiply results
[3 × 1 = 3]
Final Answer:
[\boxed{3}]
Question 5. Evaluate [\lim_{x \to 0} \dfrac{\ln(1+x^2)}{x^2}]
Step-by-Step Solution:
Step 1: Identify the form
As [x → 0], numerator → [\ln(1) = 0], denominator → [0]
Step 2: Compare with standard limit
[\lim_{t \to 0} \dfrac{\ln(1+t)}{t} = 1]
Step 3: Substitute [t = x^2]
Since [x → 0 ⇒ x^2 → 0]
Final Answer:
[\boxed{1}]
Question 6. Find [\lim_{x \to 0} \dfrac{\ln(1+5\sin x)}{x}]
Step-by-Step Solution:
Step 1: Form check
As [x → 0], [\sin x → 0] ⇒ form [\dfrac{0}{0}]
Step 2: Multiply and divide by [\sin x]
[\dfrac{\ln(1+5\sin x)}{x}
= \dfrac{\ln(1+5\sin x)}{\sin x} \cdot \dfrac{\sin x}{x}]
Step 3: Evaluate limits
[\lim_{x \to 0} \dfrac{\ln(1+5\sin x)}{\sin x} = 5]
[\lim_{x \to 0} \dfrac{\sin x}{x} = 1]
Step 4: Multiply
[5 × 1 = 5]
Final Answer:
[\boxed{5}]
Question 7. Evaluate [\lim_{x \to 0} \dfrac{\ln(1+\tan x)}{x}]
Step-by-Step Solution:
Step 1: As [x → 0], [\tan x → 0]
Form = [\dfrac{0}{0}]
Step 2: Multiply and divide by [\tan x]
[\dfrac{\ln(1+\tan x)}{x}
= \dfrac{\ln(1+\tan x)}{\tan x} \cdot \dfrac{\tan x}{x}]
Step 3: Use standard limits
[\lim_{x \to 0} \dfrac{\ln(1+\tan x)}{\tan x} = 1]
[\lim_{x \to 0} \dfrac{\tan x}{x} = 1]
Final Answer:
[\boxed{1}]
Question 8. Find [\lim_{x \to 0} \dfrac{\ln(1+2x)}{3x}]
Step-by-Step Solution:
Step 1: Rewrite
[\dfrac{1}{3} \cdot \dfrac{\ln(1+2x)}{x}]
Step 2: Apply standard result
[\lim_{x \to 0} \dfrac{\ln(1+2x)}{x} = 2]
Step 3: Multiply
[\dfrac{1}{3} × 2 = \dfrac{2}{3}]
Final Answer:
[\boxed{\dfrac{2}{3}}]
Question 9. Evaluate [\lim_{x \to 0} \dfrac{\ln(1+x^4)}{x^4}]
Step-by-Step Solution:
Step 1: Recognize standard form
[\lim_{t \to 0} \dfrac{\ln(1+t)}{t} = 1]
Step 2: Here, [t = x^4]
Step 3: Since [x → 0 ⇒ x^4 → 0]
Final Answer:
[\boxed{1}]
Question 10. Find [\lim_{x \to 0} \dfrac{\ln(1+6x)}{x}]
Step-by-Step Solution:
Step 1: Check the form → [\dfrac{0}{0}]
Step 2: Apply standard logarithmic result
[\lim_{x \to 0} \dfrac{\ln(1+ax)}{x} = a]
Step 3: Here, [a = 6]
Final Answer:
[\boxed{6}]