Question 1
Discuss continuity of
$ \displaystyle f(x)=\left\{ \begin{array}{l}x+1,\text{ }x<1\\2,\text{ }\text{ }x<1\\{{x}^{2}},\text{ }x\ge 1\end{array} \right.$
at [x = 1].
Solution (step-by-step):
- Compute the left-hand limit (LHL):
[\lim_{x\to1^-} (x+1)] [=1+1=2.] - Compute the right-hand limit (RHL):
[\lim_{x\to1^+} x^2] [=1^2=1.] - Value at the point: [f(1)=2].
- Compare: LHL = 2, RHL = 1, and f(1) = 2. Since LHL ≠ RHL, the two-sided limit does not exist.
Conclusion: [f] is discontinuous at [x=1] (jump discontinuity because left and right limits differ).
Question 2
Discuss continuity of
$ \displaystyle f(x)=\left\{ {\begin{array}{*{20}{c}} {\dfrac{{{{x}^{2}}-9}}{{x-3}},} & {x<3,} \\ {6,} & {x=3,} \\ {\dfrac{1}{{x-3}},} & {x>3,} \end{array}} \right.$
at [x = 3].
Solution (step-by-step):
- Simplify the left piece for [x\ne3]:
[\dfrac{x^2-9}{x-3}][=\dfrac{(x-3)(x+3)}{x-3}=x+3.]
So for [x<3], [f(x)=x+3]. - LHL:
[\lim_{x\to3^-} (x+3)][=3+3=6.] - RHL:
[
\lim_{x\to3^+} \dfrac{1}{x-3}.
]
As [x\to3^+] the denominator [+0] → the fraction → [+∞]. So RHL does not exist as a finite number (it is infinite). - f(3)=6. Compare: LHL = 6, RHL = ∞ (no finite limit), f(3)=6. Two-sided limit does not exist.
Conclusion: [f] is discontinuous at [x=3] (infinite / non-finite behavior from right).
Question 3
Discuss continuity of
$ \displaystyle f(x)=\left\{ {\begin{array}{*{20}{c}} {\dfrac{{\sin x}}{x},} & {x<0,} \\ {1,} & {x=0,} \\ {\cos x,} & {x>0,} \end{array}} \right.$
at [x = 0].
Solution (step-by-step):
- LHL: use standard limit
[\lim_{x\to0^-} \dfrac{\sin x}{x}] [= 1.]
(That standard limit is true from both sides.) - RHL:
[\lim_{x\to0^+} \cos x][=\cos 0 = 1.] - f(0)=1.
- Compare: LHL = 1, RHL = 1, f(0) = 1. All equal.
Conclusion: [f] is continuous at [x=0] (removable-type pieces but defined consistently).
Question 4
Discuss continuity of
$ \displaystyle f(x)=\left\{ {\begin{array}{*{20}{c}} {\dfrac{{\mid x\mid }}{x},} & {x\ne 0,} \\ {0,} & {x=0,} \end{array}} \right.$
at [x = 0].
Solution (step-by-step):
- For [x>0], [\dfrac{|x|}{x}=\dfrac{x}{x}=1]. For [x<0], [\dfrac{|x|}{x}=\dfrac{-x}{x}=-1].
- RHL:
[
\lim_{x\to0^+}\dfrac{|x|}{x}=1.
] - LHL:
[
\lim_{x\to0^-}\dfrac{|x|}{x}=-1.
] - f(0)=0. Compare: LHL = -1, RHL = 1, f(0)=0. One-sided limits are not equal and neither equals f(0).
Conclusion: [f] is discontinuous at [x=0] (jump discontinuity).
Question 5
Discuss continuity of
$ \displaystyle f(x)=\left\{ {\begin{array}{*{20}{c}} {{{x}^{2}},} & {x\le 2,} \\ {4x-4,} & {x>2,} \end{array}} \right.$
at [x = 2].
Solution (step-by-step):
- LHL (and value from left):
[\lim_{x\to2^-} x^2] [= 2^2 = 4,][\qquad] [f(2)=2^2=4.] - RHL:
[\lim_{x\to2^+} (4x-4)][=4(2)-4][=8-4=4.] - Compare: LHL = 4, RHL = 4, f(2)=4. All equal.
Conclusion: [f] is continuous at [x=2].