Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions
Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Example 1 – Derivative of Sum and Difference of Two Functions

Question 1.

Differentiate [f(x)=x^{4} + 2x^{2} – 7x].

Step-by-Step Solution:

  1. Identify terms: [u(x)=x^{4}], [v(x)=2x^{2}], [w(x)=-7x].
  2. Differentiate each term using power rule:
    • [\dfrac{d}{dx}(x^{4})=4x^{3}]
    • [\dfrac{d}{dx}(2x^{2})=2\cdot 2x=4x]
    • [\dfrac{d}{dx}(-7x)=-7]
  3. Use linearity (sum/difference): add derivatives: [4x^{3}+4x-7].

Conclusion:
[\dfrac{d}{dx}(x^{4}+2x^{2}-7x)][=4x^{3}+4x-7].


Question 2.

Differentiate [f(x)=e^{2x} + \ln x] (domain: [x>0]).

Step-by-Step Solution:

  1. Split: [u(x)=e^{2x}], [v(x)=\ln x].
  2. Differentiate [u] using chain rule: derivative of [e^{2x}] is [e^{2x}\cdot \dfrac{d}{dx}(2x)=2e^{2x}].
  3. Differentiate [v]: [\dfrac{d}{dx}(\ln x)=\dfrac{1}{x}].
  4. Sum the results: [2e^{2x}+\dfrac{1}{x}].

Conclusion:
[\dfrac{d}{dx}\big(e^{2x}+\ln x\big)][=2e^{2x}+\dfrac{1}{x}], valid for [x>0].


Question 3.

Differentiate [f(x)=\sin x – \cos x + x].

Step-by-Step Solution:

  1. Identify parts: [u=\sin x], [v=-\cos x], [w=x].
  2. Differentiate each:
    • [\dfrac{d}{dx}(\sin x)=\cos x]
    • [\dfrac{d}{dx}(-\cos x)=-(-\sin x)][=+\sin x] (careful: derivative of [\cos x] is [ -\sin x ], so minus that gives [+\sin x])
    • [\dfrac{d}{dx}(x)=1]
  3. Add them: [\cos x + \sin x + 1].

Conclusion:
[\dfrac{d}{dx}(\sin x – \cos x + x)][=\cos x + \sin x + 1].


Question 4.

Differentiate [f(x)=\tan x + \sec x].

Step-by-Step Solution:

  1. Terms: [u=\tan x], [v=\sec x].
  2. Use standard derivatives:
    • [\dfrac{d}{dx}(\tan x)=\sec^{2}x]
    • [\dfrac{d}{dx}(\sec x)=\sec x \tan x]
  3. Sum: [\sec^{2}x + \sec x \tan x].

Conclusion:
[\dfrac{d}{dx}(\tan x + \sec x)][=\sec^{2}x + \sec x \tan x].


Question 5.

Differentiate [f(x)=\sqrt{x} + x^{-3}] (domain: [x>0]).

Step-by-Step Solution:

  1. Rewrite: [\sqrt{x}=x^{1/2}], other term [x^{-3}].
  2. Differentiate using power rule:
    • [\dfrac{d}{dx}(x^{1/2})][=\dfrac{1}{2}x^{-1/2}][=\dfrac{1}{2\sqrt{x}}]
    • [\dfrac{d}{dx}(x^{-3})=-3x^{-4}][=-\dfrac{3}{x^{4}}]
  3. Add: [\dfrac{1}{2}x^{-1/2} – 3x^{-4}].

Conclusion:
[\dfrac{d}{dx}\Big(\sqrt{x}+x^{-3}\Big)][=\dfrac{1}{2\sqrt{x}} – \dfrac{3}{x^{4}}], for [x>0].


Question 6.

Differentiate [f(x)][=\dfrac{1}{x} + \ln(x^{2}+1)] (domain: [x\ne 0], but ln term ok for all real).

Step-by-Step Solution:

  1. Terms: [u=\dfrac{1}{x}=x^{-1}], [v=\ln(x^{2}+1)].
  2. Differentiate [u]: [\dfrac{d}{dx}(x^{-1})][=-x^{-2}][=-\dfrac{1}{x^{2}}].
  3. Differentiate [v] using chain rule: inner [g(x)=x^{2}+1], [g'(x)=2x]; so [\dfrac{d}{dx}\ln(g(x))][=\dfrac{g'(x)}{g(x)}][=\dfrac{2x}{x^{2}+1}].
  4. Sum: [ -\dfrac{1}{x^{2}}][ + \dfrac{2x}{x^{2}+1} ].

Conclusion:
[\dfrac{d}{dx}\Big(\dfrac{1}{x}+\ln(x^{2}+1)\Big)][ = -\dfrac{1}{x^{2}} + \dfrac{2x}{x^{2}+1}], valid where defined.


Question 7.

Differentiate [f(x)=\tan^{-1}x + x^{3}].

Step-by-Step Solution:

  1. Terms: [u=\tan^{-1}x], [v=x^{3}].
  2. Standard derivatives:
    • [\dfrac{d}{dx}(\tan^{-1}x)][=\dfrac{1}{1+x^{2}}]
    • [\dfrac{d}{dx}(x^{3})=3x^{2}]
  3. Add: [\dfrac{1}{1+x^{2}} + 3x^{2}].

Conclusion:
[\dfrac{d}{dx}\big(\tan^{-1}x + x^{3}\big)][=\dfrac{1}{1+x^{2}} + 3x^{2}].


Question 8.

Differentiate [f(x)=a^{x} + \sin x], where [a>0] is a constant.

Step-by-Step Solution:

  1. Terms: [u=a^{x}], [v=\sin x].
  2. Standard derivatives:
    • [\dfrac{d}{dx}(a^{x})=a^{x}\ln a]
    • [\dfrac{d}{dx}(\sin x)=\cos x]
  3. Sum: [a^{x}\ln a + \cos x].

Conclusion:
[\dfrac{d}{dx}(a^{x}+\sin x)][=a^{x}\ln a + \cos x].


Question 9.

Differentiate [f(x)][=\sec^{-1}x + \csc^{-1}x] (domain: [|x|>1]).

Step-by-Step Solution:

  1. Terms: [u=\sec^{-1}x], [v=\csc^{-1}x].
  2. Use standard derivatives (careful with signs):
    • [\dfrac{d}{dx}(\sec^{-1}x)][=\dfrac{1}{|x|\sqrt{x^{2}-1}}] (for [|x|>1])
    • [\dfrac{d}{dx}(\csc^{-1}x)][=-\dfrac{1}{|x|\sqrt{x^{2}-1}}] (for [|x|>1])
  3. Add: they cancel: [\dfrac{1}{|x|\sqrt{x^{2}-1}}][ – \dfrac{1}{|x|\sqrt{x^{2}-1}} = 0].

Conclusion:
[\dfrac{d}{dx}\big(\sec^{-1}x+\csc^{-1}x\big)=0], for [|x|>1]. (Nice cancellation — derivative zero on domain.)


Question 10.

Differentiate [f(x)][=\sin^{-1}x + \sqrt{1-x^{2}}] (domain: [ -1<x<1 ]).

Step-by-Step Solution:

  1. Terms: [u=\sin^{-1}x], [v=\sqrt{1-x^{2}}=(1-x^{2})^{1/2}].
  2. Differentiate [u]: [\dfrac{d}{dx}(\sin^{-1}x)][=\dfrac{1}{\sqrt{1-x^{2}}}].
  3. Differentiate [v] using chain rule:
    • Write [v=(1-x^{2})^{1/2}].
    • [\dfrac{d}{dx}(1-x^{2})^{1/2}][=\dfrac{1}{2}(1-x^{2})^{-1/2}\cdot \dfrac{d}{dx}(1-x^{2})]
    • [\dfrac{d}{dx}(1-x^{2}) = -2x]
    • So [\dfrac{d}{dx}(\sqrt{1-x^{2}})][=\dfrac{1}{2}(1-x^{2})^{-1/2}\cdot(-2x)][= -\dfrac{x}{\sqrt{1-x^{2}}}].
  4. Add derivatives:
    [\dfrac{1}{\sqrt{1-x^{2}}} + \Big(-\dfrac{x}{\sqrt{1-x^{2}}}\Big)][ = \dfrac{1-x}{\sqrt{1-x^{2}}}.]

Conclusion:
[\dfrac{d}{dx}\Big(\sin^{-1}x + \sqrt{1-x^{2}}\Big)][=\dfrac{1-x}{\sqrt{1-x^{2}}}], valid for [ -1<x<1 ].

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share
Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions