Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions
Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Example 1 – Differentiation of Function in the form f(x) by g(x)

Question 1.

Differentiate [f(x)][=\dfrac{x^{2}+1}{x+1}] , [x\ne -1].

Step-by-Step Solution:

  1. Let [u=x^{2}+1], [v=x+1].
  2. Compute derivatives: [u’=2x], [v’=1].
  3. Apply quotient rule:
    [\dfrac{v u’ – u v’}{v^{2}}][ = \dfrac{(x+1)(2x) – (x^{2}+1)(1)}{(x+1)^{2}}].
  4. Expand numerator: [(2x^{2}+2x) – (x^{2}+1)][ = x^{2}+2x-1].
  5. Final simplified derivative:
    [\dfrac{x^{2}+2x-1}{(x+1)^{2}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{x^{2}+1}{x+1}\big)][=\dfrac{x^{2}+2x-1}{(x+1)^{2}},][\quad][ x\ne -1.]


Question 2.

Differentiate [f(x)=\dfrac{3x-2}{x^{2}+1}] .

Step-by-Step Solution:

  1. Let [u=3x-2], [v=x^{2}+1].
  2. Derivatives: [u’=3], [v’=2x].
  3. Quotient rule:
    [\dfrac{(x^{2}+1)(3) – (3x-2)(2x)}{(x^{2}+1)^{2}}].
  4. Expand numerator: [3x^{2}+3 – (6x^{2}-4x)][ = 3x^{2}+3 -6x^{2}+4x][ = -3x^{2}+4x+3].
  5. Final form:
    [\dfrac{-3x^{2}+4x+3}{(x^{2}+1)^{2}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{3x-2}{x^{2}+1}\big)][=\dfrac{-3x^{2}+4x+3}{(x^{2}+1)^{2}}.]


Question 3.

Differentiate [f(x)=\dfrac{\sin x}{x}] , [x\ne 0].

Step-by-Step Solution:

  1. Let [u=\sin x], [v=x].
  2. Derivatives: [u’=\cos x], [v’=1].
  3. Quotient rule:
    [\dfrac{x\cos x – \sin x\cdot 1}{x^{2}}].
  4. Final simplified derivative:
    [\dfrac{x\cos x – \sin x}{x^{2}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{\sin x}{x}\big)][=\dfrac{x\cos x – \sin x}{x^{2}},][\quad][ x\ne 0.]


Question 4.

Differentiate [f(x)=\dfrac{e^{x}}{x}] , [x\ne 0].

Step-by-Step Solution:

  1. Let [u=e^{x}], [v=x].
  2. Derivatives: [u’=e^{x}], [v’=1].
  3. Quotient rule:
    [\dfrac{x e^{x} – e^{x}\cdot 1}{x^{2}}][ = \dfrac{e^{x}(x-1)}{x^{2}}].
  4. Final derivative written neatly:
    [\dfrac{e^{x}(x-1)}{x^{2}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{e^{x}}{x}\big)][=\dfrac{e^{x}(x-1)}{x^{2}}][,\quad][ x\ne 0.]


Question 5.

Differentiate [f(x)=\dfrac{\ln x}{x^{2}}] , [x>0].

Step-by-Step Solution:

  1. Let [u=\ln x], [v=x^{2}].
  2. Derivatives: [u’=\dfrac{1}{x}], [v’=2x].
  3. Quotient rule:
    [\dfrac{x^{2}\cdot\dfrac{1}{x} – \ln x \cdot 2x}{x^{4}}].
  4. Divide by [x^{4}]: final derivative = [\dfrac{x(1-2\ln x)}{x^{4}}][ = \dfrac{1-2\ln x}{x^{3}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{\ln x}{x^{2}}\big)][=\dfrac{1-2\ln x}{x^{3}},][\quad][ x>0.]


Question 6.

Differentiate [f(x)=\dfrac{x}{1+x^{2}}].

Step-by-Step Solution:

  1. Let [u=x], [v=1+x^{2}].
  2. Derivatives: [u’=1], [v’=2x].
  3. Quotient rule:
    [\dfrac{(1+x^{2})\cdot 1 – x\cdot 2x}{(1+x^{2})^{2}}].
  4. Simplify numerator: [1+x^{2} – 2x^{2}][ = 1 – x^{2}].
  5. Final derivative:
    [\dfrac{1-x^{2}}{(1+x^{2})^{2}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{x}{1+x^{2}}\big)][=\dfrac{1-x^{2}}{(1+x^{2})^{2}}.]


Question 7.

Differentiate [f(x)=\dfrac{\tan x}{x}] , ([x\ne 0] and where tan defined).

Step-by-Step Solution:

  1. Let [u=\tan x], [v=x].
  2. Derivatives: [u’=\sec^{2}x], [v’=1].
  3. Quotient rule:
    [\dfrac{x\sec^{2}x – \tan x\cdot 1}{x^{2}}].
  4. Final derivative:
    [\dfrac{x\sec^{2}x – \tan x}{x^{2}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{\tan x}{x}\big)][=\dfrac{x\sec^{2}x – \tan x}{x^{2}},][\quad][ x\ne 0.]


Question 8.

Differentiate [f(x)=\dfrac{x^{3}+2}{x^{2}}] , [x\ne 0].

Step-by-Step Solution:

  1. Option A: Use quotient rule directly. (We will show quotient rule method.)
    Let [u=x^{3}+2], [v=x^{2}].
    Derivatives: [u’=3x^{2}], [v’=2x].
    Quotient rule:
    [\dfrac{x^{2}\cdot 3x^{2} – (x^{3}+2)\cdot 2x}{x^{4}}].
    Simplify numerator: [3x^{4} – 2x^{4} – 4x][ = x^{4} – 4x].
    Divide: [\dfrac{x^{4}-4x}{x^{4}}][ = 1 – \dfrac{4}{x^{3}}].
  2. Option B (shortcut): simplify first: [\dfrac{x^{3}+2}{x^{2}}][ = x + 2x^{-2}]. Then derivative = [1 – 4x^{-3}] [= 1 – \dfrac{4}{x^{3}}]. (Same result.)

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{x^{3}+2}{x^{2}}\big)][=1 – \dfrac{4}{x^{3}},][\quad][ x\ne 0.]


Question 9.

Differentiate [f(x)=\dfrac{\sec x}{x}] , [x\ne 0] and where sec defined.

Step-by-Step Solution:

  1. Let [u=\sec x], [v=x].
  2. Derivatives: [u’=\sec x\tan x], [v’=1].
  3. Quotient rule:
    [\dfrac{x\cdot (\sec x\tan x) – \sec x\cdot 1}{x^{2}}].
  4. Factor [\sec x] in numerator: [\dfrac{\sec x (x\tan x – 1)}{x^{2}}].
  5. Final derivative:
    [\dfrac{\sec x (x\tan x – 1)}{x^{2}}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{\sec x}{x}\big)][=\dfrac{\sec x (x\tan x – 1)}{x^{2}}][,\quad][ x\ne 0.]


Question 10.

Differentiate [f(x)=\dfrac{\tan^{-1}x}{x}] , [x\ne 0].

Step-by-Step Solution:

  1. Let [u=\tan^{-1}x], [v=x].
  2. Derivatives: [u’=\dfrac{1}{1+x^{2}}], [v’=1].
  3. Quotient rule:
    [\dfrac{x\cdot \dfrac{1}{1+x^{2}} – \tan^{-1}x \cdot 1}{x^{2}}].
  4. Combine numerator over common denominator [1+x^{2}] if desired:
    Numerator = [\dfrac{x}{1+x^{2}} – \tan^{-1}x]. To write over common denom: [\dfrac{x – (1+x^{2})\tan^{-1}x}{1+x^{2}}]. Then whole expression:
    [\dfrac{\dfrac{x – (1+x^{2})\tan^{-1}x}{1+x^{2}}}{x^{2}}][ = \dfrac{x – (1+x^{2})\tan^{-1}x}{x^{2}(1+x^{2})}].
  5. Either form acceptable; a clear simplified final form:
    [\dfrac{x}{x^{2}(1+x^{2})} – \dfrac{\tan^{-1}x}{x^{2}}] or compact: [\dfrac{x – (1+x^{2})\tan^{-1}x}{x^{2}(1+x^{2})}].

Conclusion:
[\dfrac{d}{dx}\big(\dfrac{\tan^{-1}x}{x}\big)][=\dfrac{x – (1+x^{2})\tan^{-1}x}{x^{2}(1+x^{2})},][\quad][ x\ne 0.]

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share
Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions