Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions
Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Example – Differentiation of a function w.r.t. Another Function

Practice Questions with Step-by-Step Solutions

Question 1

Find [\dfrac{dy}{du}] if [y=x^{3}+2x] and [u=x^{2}+1].

Step-by-step Solution:

  1. Compute [\dfrac{dy}{dx}]: [\dfrac{d}{dx}\big(x^{3}+2x\big)][=3x^{2}+2].
  2. Compute [\dfrac{du}{dx}]: [\dfrac{d}{dx}\big(x^{2}+1\big)][=2x].
  3. Divide:
    [\dfrac{dy}{du}][=\dfrac{\dfrac{dy}{dx}}{\dfrac{du}{dx}}][=\dfrac{3x^{2}+2}{2x}], valid where [x\ne 0].

Conclusion:
[\dfrac{dy}{du}][=\dfrac{3x^{2}+2}{2x}].


Question 2

If [y=\sin x] and [u=\ln x], find [\dfrac{dy}{du}] for [x>0].

Step-by-step Solution:

  1. [\dfrac{dy}{dx}=\cos x].
  2. [\dfrac{du}{dx}=\dfrac{1}{x}].
  3. Divide:
    [\dfrac{dy}{du}=\dfrac{\cos x}{1/x}][=x\cos x].

Conclusion:
[\dfrac{dy}{du}=x\cos x], valid for [x>0].


Question 3

Given [y=e^{2x}] and [u=\sin x], find [\dfrac{dy}{du}] where [\cos x\ne 0].

Step-by-step Solution:

  1. [\dfrac{dy}{dx}=\dfrac{d}{dx}(e^{2x})][=2e^{2x}].
  2. [\dfrac{du}{dx}=\cos x].
  3. Divide:
    [\dfrac{dy}{du}=\dfrac{2e^{2x}}{\cos x}].

Conclusion:
[\dfrac{dy}{du}][=\dfrac{2e^{2x}}{\cos x}], provided [\cos x\ne 0].


Question 4

Find [\dfrac{dy}{du}] when [y=\ln(1+x)] and [u=x/(1+x)], [x>-1, x\ne -1].

Step-by-step Solution:

  1. [\dfrac{dy}{dx}=\dfrac{1}{1+x}].
  2. Compute [\dfrac{du}{dx}]:
    [u][=\dfrac{x}{1+x}][ \Rightarrow \dfrac{du}{dx}][=\dfrac{(1+x)\cdot 1 – x\cdot 1}{(1+x)^{2}}][=\dfrac{1}{(1+x)^{2}}].
  3. Divide:
    [\dfrac{dy}{du}][=\dfrac{\dfrac{1}{1+x}}{\dfrac{1}{(1+x)^{2}}}][=\dfrac{1}{1+x}\cdot(1+x)^{2} = 1+x].

Conclusion:
[\dfrac{dy}{du}=1+x], domain [x\ne -1].


Question 5

If [y=\arctan x] and [u=x^{2}], find [\dfrac{dy}{du}] (stating domain).

Step-by-step Solution:

  1. [\dfrac{dy}{dx}=\dfrac{1}{1+x^{2}}].
  2. [\dfrac{du}{dx}=2x].
  3. Divide:
    [\dfrac{dy}{du}][=\dfrac{1}{1+x^{2}}\cdot\dfrac{1}{2x}][=\dfrac{1}{2x(1+x^{2})}], valid where [x\ne 0].

Conclusion:
[\dfrac{dy}{du}=\dfrac{1}{2x(1+x^{2})}], [x\ne 0].


Question 6

Let [y=\sqrt{1+x^{2}}] and [u=\sin x]. Find [\dfrac{dy}{du}] where [\cos x\ne 0].

Step-by-step Solution:

  1. [\dfrac{dy}{dx}][=\dfrac{1}{2}(1+x^{2})^{-1/2}\cdot 2x][ = \dfrac{x}{\sqrt{1+x^{2}}}].
  2. [\dfrac{du}{dx}=\cos x].
  3. Divide:
    [\dfrac{dy}{du}=\dfrac{x}{\sqrt{1+x^{2}};\cos x}].

Conclusion:
[\dfrac{dy}{du}][=\dfrac{x}{\cos x\sqrt{1+x^{2}}}], provided [\cos x\ne 0].


Question 7

Given [y=(x^{3}+1)^{1/2}] and [u=x^{2}+x], compute [\dfrac{dy}{du}] (specify domain where [du/dx\ne 0]).

Step-by-step Solution:

  1. [\dfrac{dy}{dx}][=\dfrac{1}{2}(x^{3}+1)^{-1/2}\cdot 3x^{2}][ = \dfrac{3x^{2}}{2\sqrt{x^{3}+1}}].
  2. [\dfrac{du}{dx}=2x+1].
  3. Divide:
    [\dfrac{dy}{du}][=\dfrac{3x^{2}}{2\sqrt{x^{3}+1},(2x+1)}], valid where [2x+1\ne 0].

Conclusion:
[\dfrac{dy}{du}][=\dfrac{3x^{2}}{2(2x+1)\sqrt{x^{3}+1}}], for [x\ne -\tfrac{1}{2}].


Question 8

If [y=\sin(x^{2})] and [u=\cos x], find [\dfrac{dy}{du}] (state where defined).

Step-by-step Solution:

  1. Use chain rule: [\dfrac{dy}{dx}][=\cos(x^{2})\cdot 2x][ = 2x\cos(x^{2})].
  2. [\dfrac{du}{dx}=-\sin x].
  3. Divide:
    [\dfrac{dy}{du}][=\dfrac{2x\cos(x^{2})}{-,\sin x}][ = -\dfrac{2x\cos(x^{2})}{\sin x}], valid where [\sin x\ne 0].

Conclusion:
[\dfrac{dy}{du}][=-\dfrac{2x\cos(x^{2})}{\sin x}], [\sin x\ne 0].


Question 9

Let [y=\ln(\sin x)] and [u=\tan x]. Find [\dfrac{dy}{du}] (state domain restrictions).

Step-by-step Solution:

  1. [\dfrac{dy}{dx}=\dfrac{1}{\sin x}\cdot \cos x = \cot x], valid where [\sin x\ne 0].
  2. [\dfrac{du}{dx}=\sec^{2}x], valid where [\cos x\ne 0].
  3. Divide:
    [\dfrac{dy}{du}][=\dfrac{\cot x}{\sec^{2}x}][ = \cot x\cos^{2}x][ = \cos x\sin^{-1}x\cos^{2}x?]
    Better simplify: [\cot x = \dfrac{\cos x}{\sin x}], [\sec^{2}x=\dfrac{1}{\cos^{2}x}], so division gives:
    [\dfrac{\cos x/\sin x}{1/\cos^{2}x}][ = \dfrac{\cos^{3}x}{\sin x}].
  4. Final result valid where [\sin x\ne 0] and [\cos x\ne 0].

Conclusion:
[\dfrac{dy}{du}][=\dfrac{\cos^{3}x}{\sin x}], for [\sin x\ne 0,\ \cos x\ne 0].


Question 10

If [y=\dfrac{1}{1+x^{2}}] and [u=\arctan x], compute [\dfrac{dy}{du}] (state domain).

Step-by-step Solution:

  1. [\dfrac{dy}{dx}][=\dfrac{d}{dx}\big((1+x^{2})^{-1}\big)][ = -1\cdot(1+x^{2})^{-2}\cdot 2x][ = -\dfrac{2x}{(1+x^{2})^{2}}].
  2. [\dfrac{du}{dx}=\dfrac{1}{1+x^{2}}].
  3. Divide:
    [\dfrac{dy}{du}][=\dfrac{-\dfrac{2x}{(1+x^{2})^{2}}}{\dfrac{1}{1+x^{2}}}][ = -\dfrac{2x}{1+x^{2}}].
  4. Domain: all real [x] (denominators nonzero for all real [x]).

Conclusion:
[\dfrac{dy}{du}][=-\dfrac{2x}{1+x^{2}}], valid for all real [x].

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share
Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions