Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions
Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Example Set 1 – Logarithmic Differentiation

Practice Questions (with Step-by-Step Solutions)

Question 1.
Differentiate [y = x^{x}], [x>0].

Step-by-Step Solution:

  1. Take natural log of both sides: [\ln y = \ln(x^{x})].
  2. Use log-power rule: [\ln y = x\ln x].
  3. Differentiate implicitly w.r.t [x]: [\dfrac{1}{y}\dfrac{dy}{dx}][ = \ln x + x\cdot\dfrac{1}{x}][ = \ln x + 1].
  4. Multiply both sides by [y]: [\dfrac{dy}{dx} = y(\ln x + 1)].
  5. Substitute back [y = x^{x}]: [\dfrac{dy}{dx} = x^{x}(\ln x + 1)].

Conclusion:
[\dfrac{d}{dx}\big(x^{x}\big)][ = x^{x}(\ln x + 1)], valid for [x>0].


Question 2.
Differentiate [y = (x^{2}+1)^{x}], [x>0].

Step-by-Step Solution:

  1. Take ln: [\ln y = x\ln(x^{2}+1)].
  2. Differentiate implicitly:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = 1\cdot \ln(x^{2}+1) + x\cdot \dfrac{1}{x^{2}+1}\cdot 2x]
    [= \ln(x^{2}+1) + \dfrac{2x^{2}}{x^{2}+1}].
  3. Multiply by [y]:
    [\dfrac{dy}{dx} = (x^{2}+1)^{x}\Big(\ln(x^{2}+1) + \dfrac{2x^{2}}{x^{2}+1}\Big)].

Conclusion:
[\dfrac{d}{dx}\big((x^{2}+1)^{x}\big)][ = (x^{2}+1)^{x}\Big(\ln(x^{2}+1) + \dfrac{2x^{2}}{x^{2}+1}\Big)], [x>0].


Question 3.
Differentiate [y = x^{\sin x}], domain [x>0].

Step-by-Step Solution:

  1. Take ln: [\ln y = \sin x \cdot \ln x].
  2. Differentiate implicitly:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = \cos x\cdot \ln x + \sin x\cdot \dfrac{1}{x}].
  3. Multiply by [y]:
    [\dfrac{dy}{dx}][ = x^{\sin x}\Big(\cos x\ln x + \dfrac{\sin x}{x}\Big)].

Conclusion:
[\dfrac{d}{dx}\big(x^{\sin x}\big)][ = x^{\sin x}\Big(\cos x\ln x + \dfrac{\sin x}{x}\Big)], [x>0].


Question 4.
Differentiate [y = \dfrac{x^{2}\sqrt{x}}{(x+1)^{3}}], domain [x>0].

Step-by-Step Solution:

  1. Write: [y][ = \dfrac{x^{2}\cdot x^{1/2}}{(x+1)^{3}}][ = \dfrac{x^{5/2}}{(x+1)^{3}}].
  2. Take ln: [\ln y = \ln(x^{5/2}) – \ln((x+1)^{3})][ = \dfrac{5}{2}\ln x – 3\ln(x+1)].
  3. Differentiate implicitly:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = \dfrac{5}{2}\cdot\dfrac{1}{x} – 3\cdot\dfrac{1}{x+1}].
  4. Multiply by [y]:
    [\dfrac{dy}{dx}][ = \dfrac{x^{5/2}}{(x+1)^{3}}\Big(\dfrac{5}{2x} – \dfrac{3}{x+1}\Big)].
  5. (Optional) Simplify inside the bracket to a single fraction if needed.

Conclusion:
[\dfrac{d}{dx}\Big(\dfrac{x^{2}\sqrt{x}}{(x+1)^{3}}\Big)][ = \dfrac{x^{5/2}}{(x+1)^{3}}\Big(\dfrac{5}{2x} – \dfrac{3}{x+1}\Big)], [x>0].


Question 5.
Differentiate [y = ( \sin x )^{\cos x}], domain where [\sin x>0].

Step-by-Step Solution:

  1. Take ln: [\ln y = \cos x \cdot \ln(\sin x)].
  2. Differentiate implicitly using product & chain rules:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = -\sin x \cdot \ln(\sin x) + \cos x \cdot \dfrac{\cos x}{\sin x}]
    (since [\dfrac{d}{dx}(\cos x)][ = -\sin x] and [\dfrac{d}{dx}\ln(\sin x)][=\dfrac{\cos x}{\sin x}]).
  3. Multiply by [y]:
    [\dfrac{dy}{dx}][ = (\sin x)^{\cos x}\Big(-\sin x\ln(\sin x) + \dfrac{\cos^{2}x}{\sin x}\Big)].
  4. (Optional) Combine terms over common denominator [\sin x] if desired.

Conclusion:
[\dfrac{d}{dx}\big((\sin x)^{\cos x}\big)][ = (\sin x)^{\cos x}\Big(-\sin x\ln(\sin x) + \dfrac{\cos^{2}x}{\sin x}\Big)], valid where [\sin x>0].


Question 6.
Differentiate [y = (x+1)^{x+2}], domain [x>-1].

Step-by-Step Solution:

  1. Take ln: [\ln y = (x+2)\ln(x+1)].
  2. Differentiate implicitly:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = 1\cdot\ln(x+1) + (x+2)\cdot\dfrac{1}{x+1}\cdot 1].
    [ = \ln(x+1) + \dfrac{x+2}{x+1} ].
  3. Multiply by [y]:
    [\dfrac{dy}{dx}][ = (x+1)^{x+2}\Big(\ln(x+1) + \dfrac{x+2}{x+1}\Big)].

Conclusion:
[\dfrac{d}{dx}\big((x+1)^{x+2}\big)][ = (x+1)^{x+2}\Big(\ln(x+1) + \dfrac{x+2}{x+1}\Big)], [x>-1].


Question 7.
Differentiate [y][= \dfrac{(x^{2}+1)^{3}}{x^{x}}], domain [x>0].

Step-by-Step Solution:

  1. Take ln:
    [\ln y][ = 3\ln(x^{2}+1) – \ln(x^{x}) = 3\ln(x^{2}+1) – x\ln x].
  2. Differentiate implicitly:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = 3\cdot \dfrac{2x}{x^{2}+1} – \big(\ln x + x\cdot \dfrac{1}{x}\big)]
    [= \dfrac{6x}{x^{2}+1} – (\ln x + 1)].
  3. Multiply by [y]:
    [\dfrac{dy}{dx}][ = \dfrac{(x^{2}+1)^{3}}{x^{x}}\Big(\dfrac{6x}{x^{2}+1} – \ln x – 1\Big)].
  4. (Optional) Simplify factor [ (x^{2}+1) term ] inside if needed.

Conclusion:
[\dfrac{d}{dx}\Big(\dfrac{(x^{2}+1)^{3}}{x^{x}}\Big)][= \dfrac{(x^{2}+1)^{3}}{x^{x}}\Big(\dfrac{6x}{x^{2}+1} – \ln x – 1\Big)], [x>0].


Question 8.
Differentiate [y = \big( \tan^{-1}x \big)^{2}], domain all real.

Step-by-Step Solution:

  1. Take ln: [\ln y = 2\ln(\tan^{-1}x)].
  2. Differentiate implicitly:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = 2\cdot \dfrac{1}{\tan^{-1}x}\cdot \dfrac{1}{1+x^{2}}].
    (Since [\dfrac{d}{dx}\tan^{-1}x][ = \dfrac{1}{1+x^{2}}].)
  3. Multiply by [y]:
    [\dfrac{dy}{dx}][ = (\tan^{-1}x)^{2}\cdot \dfrac{2}{\tan^{-1}x}\cdot \dfrac{1}{1+x^{2}}].
  4. Simplify: one factor cancels:
    [\dfrac{dy}{dx}][ = \dfrac{2\tan^{-1}x}{1+x^{2}}].

Conclusion:
[\dfrac{d}{dx}\big((\tan^{-1}x)^{2}\big)][ = \dfrac{2\tan^{-1}x}{1+x^{2}}].


Question 9.
Differentiate [y = (x^{x^{2}})], domain [x>0].

Step-by-Step Solution:

  1. Take ln: [\ln y = x^{2}\ln x].
  2. Differentiate implicitly (product & chain inside):
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = 2x\ln x + x^{2}\cdot \dfrac{1}{x}].
    [ = 2x\ln x + x ].
  3. Multiply by [y]:
    [\dfrac{dy}{dx}][ = x^{x^{2}}\big(2x\ln x + x\big)].
  4. Factor [x] if desired:
    [ = x^{x^{2}}\cdot x(2\ln x + 1)][ = x^{x^{2}+1}(2\ln x + 1) ] (either form acceptable).

Conclusion:
[\dfrac{d}{dx}\big(x^{x^{2}}\big)][ = x^{x^{2}}\big(2x\ln x + x\big)], [x>0].


Question 10.
Differentiate [y = \dfrac{( \sin x )^{2}}{x^{\sin x}}], domain where [x>0] and [\sin x>0] for power simplicity.

Step-by-Step Solution:

  1. Take ln:
    [\ln y][ = \ln\big((\sin x)^{2}\big) – \ln\big(x^{\sin x}\big)][ = 2\ln(\sin x) – \sin x\ln x].
  2. Differentiate implicitly:
    [\dfrac{1}{y}\dfrac{dy}{dx}][ = 2\cdot \dfrac{\cos x}{\sin x} – \big(\cos x\ln x + \sin x\cdot \dfrac{1}{x}\big)]
    (product rule on [\sin x\ln x] with derivative [\cos x\ln x + \sin x\cdot \dfrac{1}{x}]).
  3. Simplify RHS:
    [= 2\cot x – \cos x\ln x – \dfrac{\sin x}{x}].
  4. Multiply by [y]:
    [\dfrac{dy}{dx}][ = \dfrac{(\sin x)^{2}}{x^{\sin x}}\Big(2\cot x – \cos x\ln x – \dfrac{\sin x}{x}\Big)].
  5. (Optional) Replace [\cot x = \dfrac{\cos x}{\sin x}] if a common denominator is desired.

Conclusion:
[\dfrac{d}{dx}\Big(\dfrac{(\sin x)^{2}}{x^{\sin x}}\Big)][ = \dfrac{(\sin x)^{2}}{x^{\sin x}}\Big(2\cot x – \cos x\ln x – \dfrac{\sin x}{x}\Big)], valid under stated domain conditions.

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share
Differentiation Introduction
Derivative of Sum and Difference of Two Functions
Derivative of Product of Functions
Quotient Rule - Differentiation
Differentiation by Chain Rule
Differentiation of Implicit Functions
Differentiation of Logarithmic Functions
Differentiation of Infinite Series
Differentiation w.r.t. Another Function
Differentiation of Parametric Functions