Practice Questions with Step-by-Step Solutions
Question 1. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 3x)}{(x^{2})}]
Step-by-Step Solution:
As [x→0]:
[\cos 3x → 1]
Hence, [1-\cos 3x → 0]
[x^{2} → 0]
So the limit is of the form [\dfrac{0}{0}].
We use the standard result:
[\lim_{θ→0} \dfrac{(1-\cos θ)}{(θ^{2})} ][= \dfrac{1}{2}]
Convert the given expression into standard form:
[\dfrac{1-\cos 3x}{x^{2}} ][= \dfrac{1-\cos 3x}{(3x)^{2}} \cdot 9]
As [x→0], [3x→0], hence:
[\dfrac{1-\cos 3x}{(3x)^{2}} → \dfrac{1}{2}]
Multiply:
[9 \cdot \dfrac{1}{2} = \dfrac{9}{2}]
Final Answer:
[\dfrac{9}{2}]
Question 2. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 5x)}{(x^{2})}]
Step-by-Step Solution:
As [x→0], the expression is of the form [\dfrac{0}{0}].
Use the identity:
[\lim_{θ→0} \dfrac{(1-\cos θ)}{(θ^{2})} = \dfrac{1}{2}]
Rewrite:
[\dfrac{1-\cos 5x}{x^{2}} ][= \dfrac{1-\cos 5x}{(5x)^{2}} \cdot 25]
Taking the limit:
[\dfrac{1-\cos 5x}{(5x)^{2}} → \dfrac{1}{2}]
Final calculation:
[25 \cdot \dfrac{1}{2} = \dfrac{25}{2}]
Final Answer:
[\dfrac{25}{2}]
Question 3. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 2x)}{(4x^{2})}]
Step-by-Step Solution:
As [x→0], numerator and denominator both tend to zero.
Factor the denominator:
[4x^{2} = (2x)^{2}]
Rewrite:
[\dfrac{1-\cos 2x}{(2x)^{2}}]
Apply the standard result:
[\dfrac{1-\cos θ}{θ^{2}} → \dfrac{1}{2}]
Hence:
[\dfrac{1}{2}]
Final Answer:
[\dfrac{1}{2}]
Question 4. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 7x)}{(49x^{2})}]
Step-by-Step Solution:
As [x→0]:
[\cos 7x → 1]
Therefore, [1-\cos 7x → 0]
[49x^{2} → 0]
Hence, the limit is of the indeterminate form [\dfrac{0}{0}].
We use the standard trigonometric limit:
[\lim_{θ→0} \dfrac{(1-\cos θ)}{(θ^{2})} = \dfrac{1}{2}]
Rewrite the denominator:
[49x^{2} = (7x)^{2}]
Rewrite the given expression:
[\dfrac{1 – \cos 7x}{49x^{2}} = \dfrac{1 – \cos 7x}{(7x)^{2}}]
As [x→0], [7x→0], so:
[\dfrac{1-\cos 7x}{(7x)^{2}} → \dfrac{1}{2}]
Final Answer:
[\dfrac{1}{2}]
Question 5. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 4x)}{(2x^{2})}]
Step-by-Step Solution:
As [x→0]:
[1-\cos 4x → 0]
[2x^{2} → 0]
Hence, the form is [\dfrac{0}{0}].
Use the standard limit:
[\lim_{θ→0} \dfrac{(1-\cos θ)}{(θ^{2})} = \dfrac{1}{2}]
Rewrite the expression:
[\dfrac{1 – \cos 4x}{2x^{2}} ][= \dfrac{1}{2} \cdot \dfrac{1 – \cos 4x}{x^{2}}]
Convert to standard form:
[\dfrac{1-\cos 4x}{x^{2}} ][= \dfrac{1-\cos 4x}{(4x)^{2}} \cdot 16]
As [x→0], [4x→0]:
[\dfrac{1-\cos 4x}{(4x)^{2}} → \dfrac{1}{2}]
Multiply step by step:
[\dfrac{1}{2} \cdot 16 \cdot \dfrac{1}{2} = 4]
Final Answer:
[4]
Question 6. Evaluate: [\lim_{x→0} \dfrac{(1-\cos x)}{(3x^{2})}]
Step-by-Step Solution:
As [x→0]:
[1-\cos x → 0]
[3x^{2} → 0]
So the form is [\dfrac{0}{0}].
Apply the standard limit:
[\lim_{θ→0} \dfrac{(1-\cos θ)}{(θ^{2})} = \dfrac{1}{2}]
Rewrite:
[\dfrac{1-\cos x}{3x^{2}} ][= \dfrac{1}{3} \cdot \dfrac{1-\cos x}{x^{2}}]
Taking the limit:
[\dfrac{1-\cos x}{x^{2}} → \dfrac{1}{2}]
Multiply:
[\dfrac{1}{3} \cdot \dfrac{1}{2} = \dfrac{1}{6}]
Final Answer:
[\dfrac{1}{6}]
Question 7. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 6x)}{(9x^{2})}]
Step-by-Step Solution:
As [x→0], the form is [\dfrac{0}{0}].
Rewrite the expression:
[\dfrac{1-\cos 6x}{9x^{2}} ][= \dfrac{1-\cos 6x}{(6x)^{2}} \cdot \dfrac{36}{9}]
Apply standard limit:
[\dfrac{1-\cos 6x}{(6x)^{2}} → \dfrac{1}{2}]
Simplify:
[\dfrac{36}{9} = 4]
Multiply:
[\dfrac{1}{2} \cdot 4 = 2]
Final Answer:
[2]
Question 8. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 8x)}{(16x^{2})}]
Step-by-Step Solution:
As [x→0], the expression gives [\dfrac{0}{0}].
Rewrite the denominator:
[16x^{2} = (4x)^{2}]
Rewrite the expression:
[\dfrac{1-\cos 8x}{(4x)^{2}} ][= \dfrac{1-\cos 8x}{(8x)^{2}} \cdot 4]
Apply standard limit:
[\dfrac{1-\cos 8x}{(8x)^{2}} → \dfrac{1}{2}]
Multiply:
[\dfrac{1}{2} \cdot 4 = 2]
Final Answer:
[2]
Question 9. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 10x)}{(5x^{2})}]
Step-by-Step Solution:
As [x→0], form is [\dfrac{0}{0}].
Rewrite:
[\dfrac{1-\cos 10x}{5x^{2}} ][= \dfrac{1-\cos 10x}{(10x)^{2}} \cdot \dfrac{100}{5}]
Apply standard limit:
[\dfrac{1-\cos 10x}{(10x)^{2}} → \dfrac{1}{2}]
Simplify:
[\dfrac{100}{5} = 20]
Multiply:
[\dfrac{1}{2} \cdot 20 = 10]
Final Answer:
[10]
Question 10. Evaluate: [\lim_{x→0} \dfrac{(1-\cos 12x)}{(6x^{2})}]
Step-by-Step Solution:
As [x→0], the limit is [\dfrac{0}{0}].
Rewrite:
[\dfrac{1-\cos 12x}{6x^{2}} ][= \dfrac{1-\cos 12x}{(12x)^{2}} \cdot \dfrac{144}{6}]
Apply standard limit:
[\dfrac{1-\cos 12x}{(12x)^{2}} → \dfrac{1}{2}]
Simplify:
[\dfrac{144}{6} = 24]
Multiply:
[\dfrac{1}{2} \cdot 24 = 12]
Final Answer:
[12]