Upgrade to get full access
Unlock the full course today
Get full access to all videos, content and practice sets.
Kumar Rohan

Physics and Mathematics

Limits of the form 1^ infinity: Example 2

Practice Questions with Step-by-Step Solutions

Question 1. Evaluate [\lim_{x \to 0} (1 + \sin x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: Identify limits of inner functions
As [x → 0],
[\sin x → 0]

So the expression becomes of the form:
[(1 + 0)^{\infty}] = [1^{\infty}] (indeterminate form)

Step 2: Rewrite the exponent
Multiply and divide the exponent by [\sin x]:

[(1 + \sin x)^{\dfrac{1}{\sin x} \cdot \dfrac{\sin x}{x}}]

Step 3: Apply standard limits
We know:

[\lim_{u \to 0} (1 + u)^{\dfrac{1}{u}} = e]

[\lim_{x \to 0} \dfrac{\sin x}{x} = 1]

Step 4: Combine results

[e^{1}]

Final Answer:

[e]

Question 2. Evaluate [\lim_{x \to 0} (1 + \tan x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\tan x → 0]

So the form is [1^{\infty}]

Step 2: Rewrite exponent carefully:

[(1 + \tan x)^{\dfrac{1}{\tan x} \cdot \dfrac{\tan x}{x}}]

Step 3: Use standard limits:

[\lim_{u \to 0} (1 + u)^{\dfrac{1}{u}} = e]

[\lim_{x \to 0} \dfrac{\tan x}{x} = 1]

Step 4: Combine:

[e^{1}]

Final Answer:

[e]

Question 3. Evaluate [\lim_{x \to 0} (1 + 2\sin x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[2\sin x → 0]

Form becomes [1^{\infty}]

Step 2: Rewrite expression:

[(1 + 2\sin x)^{\dfrac{1}{2\sin x} \cdot \dfrac{2\sin x}{x}}]

Step 3: Apply limits:

[(1 + u)^{\dfrac{1}{u}} → e]

[\lim_{x \to 0} \dfrac{\sin x}{x} = 1]

So exponent becomes [2]

Step 4: Final value:

[e^{2}]

Final Answer:

[e^{2}]

Question 4. Evaluate [\lim_{x \to 0} (1 + \sin 3x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\sin 3x → 0]

Step 2: Rewrite:

[(1 + \sin 3x)^{\dfrac{1}{\sin 3x} \cdot \dfrac{\sin 3x}{x}}]

Step 3: Use limits:

[(1 + u)^{\dfrac{1}{u}} → e]

[\lim_{x \to 0} \dfrac{\sin 3x}{x} = 3]

Step 4: Combine:

[e^{3}]

Final Answer:

[e^{3}]

Question 5. Evaluate [\lim_{x \to 0} (1 + \tan 2x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\tan 2x → 0]

Step 2: Rewrite:

[(1 + \tan 2x)^{\dfrac{1}{\tan 2x} \cdot \dfrac{\tan 2x}{x}}]

Step 3: Apply limits:

[(1 + u)^{\dfrac{1}{u}} → e]

[\lim_{x \to 0} \dfrac{\tan 2x}{x} = 2]

Step 4: Final value:

[e^{2}]

Final Answer:

[e^{2}]

Question 6. Evaluate [\lim_{x \to 0} (1 – \sin x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\sin x → 0]

Step 2: Rewrite carefully:

[(1 – \sin x)^{\dfrac{1}{-\sin x} \cdot \dfrac{-\sin x}{x}}]

Step 3: Apply limits:

[(1 + u)^{\dfrac{1}{u}} → e]

[\lim_{x \to 0} \dfrac{-\sin x}{x} = -1]

Step 4: Final result:

[e^{-1}]

Final Answer:

[\dfrac{1}{e}]

Question 7. Evaluate [\lim_{x \to 0} (1 + \sin^2 x)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\sin^2 x → 0]

Step 2: Rewrite:

[(1 + \sin^2 x)^{\dfrac{1}{\sin^2 x} \cdot \dfrac{\sin^2 x}{x^2}}]

Step 3: Use limits:

[(1 + u)^{\dfrac{1}{u}} → e]

[\lim_{x \to 0} \dfrac{\sin^2 x}{x^2} = 1]

Step 4: Final value:

[e]

Final Answer:

[e]

Question 8. Evaluate [\lim_{x \to 0} (1 + \tan^2 x)^{\dfrac{1}{x^2}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\tan^2 x → 0]

Step 2: Rewrite:

[(1 + \tan^2 x)^{\dfrac{1}{\tan^2 x} \cdot \dfrac{\tan^2 x}{x^2}}]

Step 3: Use:

[\lim_{x \to 0} \dfrac{\tan^2 x}{x^2} = 1]

Standard exponential limit

Step 4: Final value:

[e]

Final Answer:

[e]

Question 9. Evaluate [\lim_{x \to 0} (1 + 3\sin 2x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\sin 2x → 0]

Step 2: Rewrite:

[(1 + 3\sin 2x)^{\dfrac{1}{3\sin 2x} \cdot \dfrac{3\sin 2x}{x}}]

Step 3: Apply limits:

[(1 + u)^{\dfrac{1}{u}} → e]

[\lim_{x \to 0} \dfrac{\sin 2x}{x} = 2]

Step 4: Final value:

[e^{6}]

Final Answer:

[e^{6}]

Question 10. Evaluate [\lim_{x \to 0} (1 – 4\tan x)^{\dfrac{1}{x}}]

Step-by-Step Solution:

Step 1: As [x → 0],
[\tan x → 0]

Step 2: Rewrite:

[(1 – 4\tan x)^{\dfrac{1}{-4\tan x} \cdot \dfrac{-4\tan x}{x}}]

Step 3: Use:

[(1 + u)^{\dfrac{1}{u}} → e]

[\lim_{x \to 0} \dfrac{\tan x}{x} = 1]

Step 4: Final value:

[e^{-4}]

Final Answer:

[\dfrac{1}{e^{4}}]

Unlock the full course today

Get full access to all videos and content.

Scroll to Top
New to Ucale?
Already have a account?
OR
Share