1. Concept Overview
When a function is written as a quotient of two differentiable functions:
[f(x)=\dfrac{u(x)}{v(x)}]
Quotient Rule Formula
[f'(x)][=\dfrac{v(x)\cdot u'(x) – u(x)\cdot v'(x)}{[v(x)]^{2}}]
Remember the order:
v u′ − u v′ ( NOT the opposite! )
Example 1
Differentiate: [f(x)=\dfrac{x^{2}+3x}{x+1}]
Step-by-Step Solution
- Identify numerator and denominator:
[u=(x^{2}+3x)], [v=(x+1)] - Derivatives:
[u’=2x+3], [v’=1] - Apply quotient rule:
[f'(x)=\dfrac{v u’ – u v’}{v^{2}}] - Substitute:
[f'(x)][=\dfrac{(x+1)(2x+3) – (x^{2}+3x)(1)}{(x+1)^{2}}] - Expand and simplify numerator:
[(x+1)(2x+3)][=2x^{2}+5x+3]
Now subtract [x^{2}+3x]:
[2x^{2}+5x+3 – (x^{2}+3x)][=x^{2}+2x+3] - Result:
[f'(x)][=\dfrac{x^{2}+2x+3}{(x+1)^{2}}]
Conclusion:
[\dfrac{d}{dx}\big(\dfrac{x^{2}+3x}{x+1}\big)][=\dfrac{x^{2}+2x+3}{(x+1)^{2}}]
Example 2
Differentiate: [f(x)=\dfrac{3x-1}{x^{2}}]
Step-by-Step Solution
- [u=(3x-1)], [v=x^{2}]
- [u’=3], [v’=2x]
- Quotient rule:
[f'(x)][=\dfrac{v u’ – u v’}{v^{2}}] - Substitute:
[f'(x)][=\dfrac{x^{2}(3)-(3x-1)(2x)}{(x^{2})^{2}}] - Expand numerator:
[x^{2}(3)=3x^{2}]
[(3x-1)(2x)=6x^{2}-2x]
Then:
[3x^{2} – (6x^{2}-2x)][ = -3x^{2}+2x] - Result:
[f'(x)=\dfrac{-3x^{2}+2x}{x^{4}}] - Simplify by dividing each term:
[\dfrac{-3x^{2}}{x^{4}}][=-\dfrac{3}{x^{2}}]
[\dfrac{2x}{x^{4}}][=\dfrac{2}{x^{3}}]
Conclusion:
[\dfrac{d}{dx}\big(\dfrac{3x-1}{x^{2}}\big)][=-\dfrac{3}{x^{2}}+\dfrac{2}{x^{3}}]